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A half-immersed circular cylinder is making vertical oscillations on water of 
finite constant depth. The virtual-mass and damping coefficients are studied in 
the limit as the wavelength tends to infinity. It is found that the virtual-mass 
coefficient tends to a finite limit and that the amplitude ratio ultimately varies 
as the frequency. This behaviour differs from the behaviour for infinite depth, 
where the virtual-mass coefficient tends to infinity and the amplitude ratio 
ultimately varies as (frequency)2. 

1. Introduction 
In ship hydrodynamics it is customary to describe the hydrodynamic force on 

a harmonically oscillating body by means of two dimensionless coefficients. 
The force component in phase with the acceleration of the body is described by 
the virtual-mass coefficient, the force component in quadrature with the acce- 
leration by the amplitude ratio. In  the present note we shall be mainly concerned 
with the virtual-mass coefficient. For a half-immersed heaving circular cylinder 
on water of infinite depth it has been shown (Ursell 1949) that the virtual-mass 
coefficient tends to infinity as the frequency tends to zero, and for water of finite 
depth the same conclusion was suggested by the numerical computations of Yu 
& Ursell (1961; this paper will be referred to as Y). It has however been known 
for some time that the virtual-mass coefficients given in Y contain errors; thus 
Rhodes-Robinson (1970) found in his analytical treatment of the short-wave 
limit that at  high frequencies his results were in agreement with unpublished 
computations by W. R. Porter but not with those in Y. More recently several 
workers have obtained numerical results for low frequencies which differ from 
the results in Y and also from each other, and which suggest that the virtual-mass 
coefficient remains finite for finite depth. 

In the present paper the virtual-mass coefficient will be investigated analytic- 
ally for finite depth, when the frequency tends to zero while the radius and the 
depth are kept fixed. As in Y, a half-immersed circular cylinder will be treated, 
and the potential will be expanded in terms of a complete set of harmonic func- 
tions. (For infinite depth this expansion becomes the well-known expansion in 
terms of a wave source and wave-free potentials.) The behaviour of these har- 
monic functions will be investigated in the long-wave limit, and it will be shown 
that one of them tends to infinity while the others tend to finite limits. (The 
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18 F .  Ursell 

coefficients in the expansion also tend to  finite limits.) The most important step 
in the investigation is the determination of a certain finite limit. It will be shown 
that the virtual-mass coefficient tends to a finite limit, given by equation (4.8) 
below. A similar result may be expected for other cross-sections. 

2. The form of the expansion 
As in Y, let the origin of co-ordinates be taken in the mean free surface of the 

fluid, a t  the mean position of the centre of the heaving circular cylinder. Let the 
x axis be taken horizontal and the y axis vertical (y increasing with depth). Let 
a be the radius of the cylinder and h the mean water depth. Write x = rs ine 
and y = r cos 0. Then the velocity potential Re #(a, y) e-iut satisfies the equation 
of continuity 

(-&+&)#(x,y) = 0 in the fluidregion --OO < x < 03, 0 < y < h, r > a, 

with the linearized boundary conditions 

on the free surface y = 0, 

= 0 on the bottom y = h, ( 2 . 2 )  
= lcrcos0 on the cylinder r = a, 101 < in. ( 2 . 3 )  

(Here I ,  which is taken to be real, is the amplitude of oscillation of the cylinder.) 
At infinity there is the radiation condition that waves travel outwards. The 
wavenumber k,  is defined in the usual manner as the positive root of the equation 
k,h tanh k,h = Kh;  we observe that k ,  h is a function of Kh, and that 

k,h N (Kh)* as Kh+0 .  

By symmetry it is sufficient to  consider the region in which x > 0 (or equiva- 
lently, in which 0 < 0 < in).  Then (as in Y) the potential is expanded in the 
form r m 1 

where 
cash k ( h  - y) cos kxdk 2Ai  cash koh cash k,(h - 9) cos kox,  k sinh kh - K cosh kh -2k ,h  + sinh 2k,h 

(2.5) 
f F + i f  = - 

\ I  

cos 2nO K cos (2n - 1) 0 
F2, + i f2, = -+ - r2n 2n-1 r2n-1 

d k  e-”(K + k )  ( K  sinh ky - k cosh ky) k2n-2 cos kx 
k sinh kh - K cosh kh 

2ni kin cosh k,(h - y)  cos k,x +- ( n =  1 , 2 , 3  ,... ), ( 2 . 6 )  (2n - l ) !  cosh k0h(2k,h + sinh 2k,h) 

where denotes the Cauchy principal value of the integral. Each term of the 

expansion (2.4) satisfies the equation of continuity, the free-surface condition, 
f 
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the bottom condition and the radiation condition. The boundary condition (2.3) 
on the circle is also satisfied if the coefficients A, and A,, can be chosen such that 

when r = a and 0 < 0 < $77. Here and later, angular brackets are used to indicate 
that r is to  be put equal to  a. It was shown in Y that the coefficients A, and A,, 
are uniquely determined by (2.7). The functions F ,  f, h2,F2, and h2,f2, are 
functions of Kr and 8, involving Kh (or k,h) as a dimensionless parameter; the 
coefficients A, and are functions of the diinensionless parameters K h  and alh. 

In  the present work we are concerned with the behaviour of the potential (2.4) 
when Kh+0 while alh remains fixed. For this purpose we must study the be- 
haviour of the functions F ,  f, F2m and fi, as Kh  -+ 0 [and the consequent behaviour 
of the coefficients A, and A,, determined by (2.7)]. From the expressions (2.5) 
and (2.6) it is evident that  

and thus (f) becomes infinite in the limit, but i t  is not difficult to  see that 
(aa f lar )  = O(k,h) tends to  zero. The functions (f,,) also tend t o  zero. The 
limiting behaviour of the functions F and F,, is more difficult to  determine. It 
is shown in the appendix that they tend to  finite limit functions: 

A 

F(x ,  3 )  + F ( x ,  9) = 4 log [2(cosh nxlh - cos nylh)], (2.8) 

The limit functions and P2,, satisfy the boundary condition dP/dy = 0 on 
y = 0 [instead of (2.1)] and also Laplace's equation and the bottom condition 
(2.2), together with the conditions 

-log r/h is bounded near r = 0, 
r = 0, 

h 

F 2m - r-,, cos 2mf3 is bounded near 

but these conditions do not determine P and p,, uniquely since they allow arbi- 
trary constants to be added. It does not seem possible to determine these con- 
stants (which affect the virtual mass) except by applying a complicated limiting 
operation to the solution for arbitrary k,h. 

3. The determination of A, and 
We can rewrite (2.7) in the form 

for arbitrary k,h 

where 

and 
277COSh koh E =  2k,h + sinh 2k,h 
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It is not difficult t o  see that the last angular bracket in (3.1) tends t o  the finite 
limit ( u p )  COS, 28 - (a/h) COB 8 as koh+ 0. 

Let u?i consider the expansions 

of the functions on the left in terms of the functions on the right. Evidently B,, 
(3.6) and C,, are real, and A,, = B,, - iEetC,,. 

Let us write 
1 ; B,,(koa)2m 

cosh2koh, fz l  (2m- I ) !  ' 9 = B o +  

C2m(kOa)2m c 1 
= co+cosh2k,h,,l ( 2 m -  l ) !  * 

Then, from (3.6),  we have 
9t = 9 - iEYIO, 

whence 

where 

9 B( 1 - iEK) a=-= 
1+iEC 1+E%2 

= %( 1 - iEO)/%, 
b = 1 + E2Q2. 

(3.9) 
(3.10) 

Thus, when B,, B2,1,r Co and C,, have bccri determined from (3.4) and (3.5), the 
coefficients do and -4, are given by (3.6),  where ?I is given by (3.9) and where 
B and are given by (3.7) and (3.8). It is then possible to  find Q everywhere, 
and in particular its value (9) on the circle. The real part of (9) is proportional 
t o  the prchssare component in phase with the acccleration of the circle, and it is 
the vertical force dcrivtd from this conlpo~icnt which is described by the virtual- 
mass coefficient. The imaginary part of (#) is proportional t o  the pressure com- 
ponent in quadrature with the acceleration, and is thus related to the wave 
amplitude at infhity. 

\Vc shall now cspress Re (0) and I m  (4) in terms of B ,  and C,. IVe know 

0 (3.11) 
from (8.4) that  

- = - A,F + C a2mA2i,, F,, - iU f, 

A, = BBm - iEIIC,, = B ,  - iE%%-l( 1 - iEQ) C ,  

m 

lC7a in= 1 

where 
58 i E 9  
's, 's, 

= B ,  - - OE'V,, - - C,, (3.12) 

and a = 58's,-1(1 - i E Q ) ,  la1 = 58/39. (3.13) 

On substitut,ing (3.12) and (3.13) in (3.11) and taking real and imaginary parts 
on r = a ,  we find that 

and 

(3.11) 

(3.15) % (Ti 

1111 ~ ($5) = -- E23 ( - C, F + ?: dn1C2,  ...I) - 5 (f ). 
Lm 's, 1 
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277i cosh k, h 
- coshk,(h--y)exp(ik,~x~)'Lz = 9, say, 0 _ -  

h a  2k0h+sinh2k,h 

while the wave amplitude is aq-'IQI when y = 0,  so the amplitude ratio is 

a% 27~k,n sinh k,h 
IaQ/gll = -IF1 = cosh kohl 'Lz I, g 2k,h+ sinh 2k,h 

i.e. 

from (3.13). 

77 sinh 2k, h IBI amplitude ratio = 2k,h +sinh 2k,h k 0 a 5 ,  (3.16) 

4. The limit of the potential for small k,h 

It is shown in the appendix that 
To find this limit we consider the behaviour of (3.4) and (3.5) for small k,h. 

m x ,  Y) = %, y) + O(k,h)2, 
Fzrn(2, y) = 4rn(x, Y) + ~ ( k o h ) ~ ,  

where P and &,, are defined by (2.8) and (2.9). It thus seems reasonable to 
suppose (and i t  can be rigorously proved) that B,, = Bzm + O(E,h)2 and 
Czrn = e,, + O(k,h)2, where 

[It is not difficult to  show that the left-hand side of (4.2) is the limit of the left- 
hand side of (3.5).] These equations no longer involve koh. It also follows that 
B = Bo+O(k,h)2, Q = e,+O(k,h)2 and fs, = 1 +O(k,h)z .  Thus, neglecting (koh)2 
in (3.14), we find that 

where 

= ( 8 ( x ,  y)) + a77290 Go + O(k,h)2, 
m 

B(x, y) = -BOP + c aZmBz, Pz,. (4.4) 
m= 1 

The constants 8, and e0 can be found explicitly, for the expansions of (a aP/ar) 
and (aaR2,/ar) in Fourier series (obtained from equations (A 17) and (A 19) 
in the appendix) show that 
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Thus, on applying the operator 

that  2, = - 2/n. Similarly, it is found from (4.2) that  e, = 2a/nh; thus 

... dO to (4.1) we find that 1 = - BnB,, i.e. Ioin 
Re (Q)/Zua = (B(x ,  y)) - a/h + O(k,h)2. (4.5) 

Also, from (3.15), 
Im (Q)/lga = - B, f (  1 + 0(1;,h)2) 

= - (ko/Z)-'(I + O(koh)2 ) ,  (4.6) 

(4.7) 

which tends to  infinity as k,h+ 0. And from (3.16) the amplitude ratio is seen to 
be 

The virtual-mass coefficient is defined as the ratio 

gn(koa)  ]Bol ( 1  + O(k07q2) = (,%,a) ( 1  + O(k,h)2) .  

3n 
- .I-,, ~e (9) a cos 0d0/~na21gz 

-- -$ B(asin0,acos8)-jE co~OdO+O(k,h)~. (4.8) 

These results may be compared with the well-known corresponding results for 
infinite depth when Ka+ 0 (with the corresponding potential denoted by Qm): 

- T I o  ( ") 

amplitude ratio N 2Ka, 
8 1 
nz Ka virtual-mass coefficient = - log - + O( 1) .  

The additive constant in the potential may also be found by an application of 
Green's theorem t o  the harmonic functions Q and G = F + i f  in the region 
occupied by the fluid. We have 

where the integral is taken along the complete boundary closed a t  infiiity. The 
boundary conditions satisfied by Q and G show that the integrand vanishes 
along the free surface and the bottom, also there is no contribution from infinity, 
where both Q and G satisfy radiation conditions. Thus only the contribution 
from the circle r = a remains, i.e. 

(4.9) 

On the circle r = a we have 

(G) = ( F ) + i ( f )  = (E;)-i~/2k,h+O(k,h),  (4.10) 

+O(kOh)', (4.11) 
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these are known results from the expression for F and from the boundary condi- 
tion. The form of ($) is given by (4.3) and (4.4): 

(9) = l 4 ( x ,  y)) +c(k,h) + O(k,h), (4.13) 

where c(k,h) is independent of 8. I n  fact we see that 
c(k,h) = (k0h)- lp  +q+O(k,h), (4.14) 

where p and q are constants. Alternatively i t  would be reasonable to assume 
the forms (4.13) and (4.14) since substitution in (4.9) shows that c(k,h) must 
increase at  least as fast as (k0h)-l. The constants p and q can be found by sub- 
stituting (4.10)-(4.13) in (4.9).  We thus obtain 

(4.15) 

+ q/:T ( a  g) dO - &np s,’” { (3’ cos 28 - 2 cos 8 d8 + O ( k ,  h ) ,  (4.16) 
h I 

where all the integrals are independent of k ,  h. IVe now observe that 

(4.17) 

and that (4.18a, b )  

Let us, for instance, consider (4.17). By Green’s thcorem we have 

where the integral is taken along the boundary of the fluid. The integrand vanishes 
along the free surface and the bottom, where aP/ay = 0 and aslay = 0, and 
also at  infinity since B(x ,  y )  has the form (4.4) and the terms involving pZrn 
vanish at  infinity. (It is a t  this point that  we use the normalization of B(x,  y )  
by the correct additive constant.) The result (4.17) follows. Equation ( 4 . 1 8 ~ )  
expresses the source strength of 3, while (4.18b) follows from the boundary 
condition satisfied by B(x,y) on the circle r = a. We can now conclude that 
(4.15) and (4.16) both vanish, whence i t  follows that 

Thus Re ($)/Zcra = (B(x,  y)) - a/h +O(koh) ,  in agreement with (4.5), which shows 
that the last term is in fact O(k,h)2. 

p = -i, p = -a/h. 
h 

5.  Discussion 

&(x, y; alh), which satisfies 
We observe that the virtual-mass coefficient involves the harmonic function 

aaB/ar h = coso on r = a (5.1) 
and aB/ay= 0 on y =  h, (5.2) 

aB/ay = 0 on the free surface (5.3) 

but satisfies the limiting boundary condition 
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instead of the usual free-surface condition (2.1). B ( x , y )  is just one of the solu- 
tions of the limiting boundary-value problem defined by (5.1)-(5.3); evidently 
there are infinitely many other solutions (with finite velocity a t  infinity), which 
differ from 8 ( x ,  y) by arbitrary additive constants. The theoretical calculation 
given above shows that the particular solution B ( x ,  y) which we require is 
uniquely defined as having an expansion of the form (4.4). Since 

P(x ,  y) - ~r\xl/2h-+ 0 and p2,+ 0 

as 1x1 -+ co we may describe B(x,  y) as being that solution of the limiting boundary- 
value problem which satisfies B(x ,  9)- Ixl/h-+O as 1x1 -+a. 

We also observe that for both finite and infmite depth the quotient (@)/ laa 
tends to  infinity when the wavelength tends t o  infinity, and that  for finite 
depth i t  is ultimately in quadrature with the acceleration of the cylinder whereas 
for infinite depth i t  is ultimately in phase. It is now not difficult to  see how errors 
may arise in the numerical calculation of Re <@) for finite depth. Let us suppose, 
for instance, that  we solve the problem in the most direct way, by determining 
the complex-valued constants A,, from (2.7). Then @ / b a  is given by (3.11), 
and the difficulty arises from the last term - i % f  on the right-hand side, which 
contributes (f) I m  % to  the quantity Re (Q)/laa appearing in the virtual-mass 
coefficient. Since ( f )  tends to  infinity when the wavelength tends to  infinity, 
we see that a small error in Im may cause a significant error in the virtual-mass 
coefficient. I n  our method, on the other hand, the quantity Re (@)/ laa is given 
by (3.14), and all the terms in this expression remain bounded when the wave- 
length tends to  infinity. I n  particular, the quantity cf) now occurs in the com- 
bination Ecf) ,  which remains bounded. 

The present calculation uses an expansion in terms of multipole potentials 
a t  the origin, and is concerned with the half-immersed circular cylinder. Similar 
arguments may be expected to apply to  integral equations and therefore to  
arbitrary cross-sections. 

Appendix. Long-wave limits of source and multipole potentials 
The real part of the source potential is, by deflnition [Y, equations (2.8)-(2.13)], 

cosh k(h  - y) cos kxdk 
K cosh kh - k sinh kh 

coskx 
e-kY - OD e-"(K sinh ky - k cosh ky) cos kxdk =i 0 K-k d k + f i l  (K-k)(Kcoshkh-ksinhkh) 

I C O S ( 2 S + l ) t l  
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FIGURE 1. The contour of integration C. 
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where, by definition, 

We shall examine the behaviour of G2s+l(V) when V - t  0, and shall then be 
able to infer the behaviour of F(x ,  y) when Kh-t 0. Consider the integral 

1 ~ i 2 S + l e - ~  (log u - ni) du %Ic (u - V )  (26 sinh u - V cosh u) 

along a contour C which will be specified in a moment. We observe that the inte- 
grand in (A 5 )  has a logarithmic branch point at u = 0, and that near u = 0 i t  
has poles a t  u = V and a t  u = k vo, where vo is the positive root of vo tanh vo = V .  
Let the contour of integration C be taken as in figure 1. A cut is made from u = 0 
to u = +a along the real u axis. For positive u we easily see that logu-ni is 
equal to  log IuI - ni along the upper side of the cut, but equal to  log 1ul+ ni 
along the lower side of the cut; for negative u the value of log u - ni is log IuI 
on both the upper and the lower part of the contour. It is then not difficult to 
see that 

u2s+l e-u du $Ic = fom (u - V )  (u sinh u - V cosh u) 
+ 4 (residue at  u = vo) + & (residue at  u = V )  + (residue a t  u = voeni) 
+ 4 (residue a t  u = w0eZni )  + 4 (residue at  u = VeZni), (A 6) 

where the residue terms come from the indentations a t  the poles. It is found that 
the residue terms from u = vo, vOeni and vOezni add up to  zero, and that the 
residue terms from u = V and VeZni add up to  - VZslog V .  Thus 

i.e. 
1 

Gz,+l(V) = j + V2"og V .  
C 

We now show, by deforming the contour C, that  

Is ani c 

has a series expansion in powers of V .  Let the contour C be deformed into the 
contour C, shown in figure 2, where 7 < i n  is some fixed positive constant. By 

r r 

. It is not difficult to  see that Iu tanh uI and IuI have Jc = Jc. Cauchy's theorem, 

positive lower bounds on' C,, thus there is a number m(7)  > 0 such that 
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/ 
\ 
\ 
/ 

FIGURE 2. The contour C,. 

Iutanhul > m(7) and IuI > m(7). Choose V such that IVI < m(7);  then the 
integrand can be expanded in powers of V :  

m 
- V m  (cothm+l u - 1 )  

u ecU 
(u - V )  (u sinh u - V cosh u) - l , l=o CUni+l 

It follows that 
m 1 c V”m1(2s-m-I,m+l), 

where by definition 

I ( M ,  N )  = (A 8) uJl (log u - Ti) (cotl1”u - I )  du.  - 
2ni s”’ ” 

(The contour of integration in (A 8) is C, or any equivalent contour.) Thus, 
finally, 

W 

i.e. G2s+l(V) = V2’l0g V +  C Vm1(2s-m-I,m+l).  (A 9) 
m= 0 

This is the required expansion for G25+1(V). Let this be substituted in (A 1)- 
(A 3). The terms (A 2 )  and (A 3) are of the form 

When the term (A 10) is combined with (A I), all terms involving logK dis- 
appear, and we find that 

= y + log r/h + O(Kh). 
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It only remains to  find the coefficients 

1 o+ 2L2s-le-u 
(log u - ni) du. 

2n2 sinhu 

For this purpose, let us take v to be real and strictly positive, and consider the 
integral 

du = - (A 12) 

where zu = 2u. From Erddlyi (1953, p. 32, equation (9)) we see that 

where 

sinnvI’(v+1)5(v+1) $(v) = -___ n 2” 

is the Riemann zeta-function. By analytic continuation these relations hold 
throughout the complex v plane. By differentiating with respect to  v we find that 

O f  (ue-ni)v  (log u - mi) e-udu 
2ni ‘ S  “0 sinh u 2 

,#’(v) = - 

whence 1(2s- 1 , l )  = - X’(2s- 1) 

When s = 1,2,3, . . . , we use (A 15) and find that 

W S )  (2s- I)!  
I (2s-  1, I )  = ,,,,5(2s) = 22s-1 5(2s) when s = 1,2,3, ... . 

When s = 0,  we use (A 16) and find that 

- I ( -  1, 1) = -2r’(1)~(0)+25(0)10g2-2~(0)  
= -y-log2+log2n 
= logn-y, 

Fk, Y) = P ( x ,  Y) +O(Kh),  

since { ( O )  = -; and { ’ ( O )  = -glog2n (Erddyi 1953, p. 34, equation (18)). It 
follows from (A 11) that 

where (A 17) 
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The series in (A 17)  can be summed explicitly since the right side of (A 17) is 
the real part of 

h n(y  +ix) 7r(y - ix) sin - F ( x ,  y) = log 2sin ~ = +log 4sin - 2h Thus I n(yAix)l I 2h ' 

i.e. 

This is the limit of the source potential, with the correct additive constant. 

multipole potential, we may use the expansion 

FZn(x, Y) = 7 2 n -  1 r2n-1 

To h d  the corresponding long-wave behaviour of the real part FZn(x, y) of the 

cos2ne ~i' cos(2n-i)e +- 

where 
* (u + V )  u2s+1e-udu 

Vcoshu-usinhu 

= V2G2Sfl( V )  - G2s+3( 0 (A 18) 

(It follows from (A 9) that J?a+l(V) can be expanded in a power series in V. )  
Or we may observe more simply that 

1 

whence i t  follows that 

1.e. 
1 (2n+2s- I ) !  2s c (-&) C(2n + 2s) cos 2so. cos 2nB 2 

2;in(x, Y) = ~ +-- 
r2n (2n-  I)!  (2h)2)as=0 (2s)! 

More precisely, F2,(x, y) = e n ( x ,  y) + O(Kh).  
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